Phys Rev B:宁波材料所在二维磁性材料领域取得新
日期:2019-06-02

  自二维磁性材料被成功制备以来,人们一直极度关注其磁性的调控。特别是对于双层CrI3而言,曾经有多篇文献(Nature 546, 270 (2017); Science 360, 1214 (2018); Science 360, 1218 (2018); Nat. Mater. 17, 406 (2018))报道其具有层间反铁磁序,并且在施加外场后,可以实现从反铁磁性到铁磁性的转变,并观察到巨大的隧穿磁阻。文献报道称,CrI3会在220K左右发生由温度诱导的结构相变,由单斜相(高温相)转变成六方相(低温相)。人们通常认为类石墨烯堆垛六方相是低温稳定结构,然而,研究团队的密度泛函理论计算发现该结构的双层CrI3具有稳定的层间铁磁序,并非实验上所发现的层间反铁磁序。因此,双层CrI3磁性相关的研究焦点之一在于确定其真实的材料结构及层间耦合机制。

  近期,中科院宁波材料所钟志诚研究员团队和中国人民大学季威教授团队合作,基于第一性原理计算研究了双层CrI3中的层间磁耦合机制,发现堆垛方式可以调控层间耦合形式,从而诱导出不同的层间磁基态:其中低温相堆垛结构为层间铁磁序,而该工作预测的高温相堆垛结构为层间反铁磁序。文章中还指出,在以往的实验报道中,由于实验样品制备的原因,CrI3双层结构会受到BN等衬底的限制,在降温后并没有发生结构转变,而是保持了反铁磁态的高温相结构。该工作解决了最近一系列实验中双层CrI3层间反铁磁序来源这个悬而未决的问题,提出了一种在弱非共价耦合极限下的磁耦合机制,并为二维材料中利用堆垛的自由度调控磁性提供了可能。在审稿期间,该工作的预印本(arXiv:1806. 09274)已被引用十余次,部分理论预测最近分别被复旦大学吴施伟教授团队及瑞士巴塞尔大学(University of Basel)的P. Maletinsky教授团队的实验工作所证实(arXiv:1904.03577;Science 10.1126/science.aav6926 (2019))。